Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Sci Total Environ ; 932: 173029, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719039

RESUMEN

Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.

2.
Microsyst Nanoeng ; 10: 58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725436

RESUMEN

This work presents a single-structure 3-axis Lorentz force magnetometer (LFM) based on an AlN-on-Si MEMS resonator. The operation of the proposed LFM relies on the flexible manipulation of applied excitation currents in different directions and frequencies, enabling the effective actuation of two mechanical vibration modes in a single device for magnetic field measurements in three axes. Specifically, the excited out-of-plane drum-like mode at 277 kHz is used for measuring the x- and y-axis magnetic fields, while the in-plane square-extensional mode at 5.4 MHz is used for measuring the z-axis magnetic field. The different configurations of applied excitation currents ensure good cross-interference immunity among the three axes. Compared to conventional capacitive LFMs, the proposed piezoelectric LFM utilizes strong electromechanical coupling from the AlN layer, which allows it to operate at ambient pressure with a high sensitivity. To understand and analyze the measured results, a novel equivalent circuit model for the proposed LFM is also reported in this work, which serves to separate the effect of Lorentz force from the unwanted capacitive feedthrough. The demonstrated 3-axis LFM exhibits measured magnetic responsivities of 1.74 ppm/mT, 1.83 ppm/mT and 6.75 ppm/mT in the x-, y- and z-axes, respectively, which are comparable to their capacitive counterparts.

3.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712239

RESUMEN

Peptides are widely used within biomaterials to improve cell adhesion, incorporate bioactive ligands, and enable cell-mediated degradation of the matrix. While many of the peptides incorporated into biomaterials are intended to be present throughout the life of the material, their stability is not typically quantified during culture. In this work we designed a series of peptide libraries containing four different N-terminal peptide functionalizations and three C-terminal functionalization to better understand how simple modifications can be used to reduce non-specific degradation of peptides. We tested these libraries with three cell types commonly used in biomaterials research, including mesenchymal stem/stromal cells (hMSCs), endothelial cells, and macrophages, and quantified how these cell types non-specifically degraded peptide as a function of terminal amino acid and chemistry. We found that peptides in solution which contained N-terminal amines were almost entirely degraded by 48 hours, irrespective of the terminal amino acid, and that degradation occurred even at high peptide concentrations. Peptides with C-terminal carboxylic acids also had significant degradation when cultured with cells. We found that simple modifications to the termini could significantly reduce or completely abolish non-specific degradation when soluble peptides were added to cells cultured on tissue culture plastic or within hydrogel matrices, and that functionalizations which mimicked peptide conjugations to hydrogel matrices significantly slowed non-specific degradation. We also found that there were minimal differences across cell donors, and that sequences mimicking different peptides commonly-used to functionalized biomaterials all had significant non-specific degradation. Finally, we saw that there was a positive trend between RGD stability and hMSC spreading within hydrogels, indicating that improving the stability of peptides within biomaterial matrices may improve the performance of engineered matrices.

4.
Small ; : e2401360, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708800

RESUMEN

Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.

5.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612449

RESUMEN

Stress granules (SGs) are membraneless ribonucleoprotein (RNP)-based cellular foci formed in response to stress, facilitating cell survival by protecting against damage. Mammalian spermatogenesis should be maintained below body temperature for proper development, indicating its vulnerability to heat stress (HS). In this study, biotin tracer permeability assays showed that the inhibition of heat-induced SG assembly in the testis by 4-8 mg/kg cycloheximide significantly increased the percentage of seminiferous tubules with a damaged blood-testis barrier (BTB). Western blot results additionally revealed that the suppression of heat-induced SG assembly in Sertoli cell line, TM4 cells, by RNA inference of G3bp1/2 aggravated the decline in the BTB-related proteins ZO-1, ß-Catenin and Claudin-11, indicating that SGs could protect the BTB against damage caused by HS. The protein components that associate with SGs in Sertoli cells were isolated by sequential centrifugation and immunoprecipitation, and were identified by liquid chromatography with tandem mass spectrometry. Gene Ontology and KEGG pathway enrichment analysis revealed that their corresponding genes were mainly involved in pathways related to proteasomes, nucleotide excision repair, mismatch repair, and DNA replication. Furthermore, a new SG component, the ubiquitin associated protein 2 (UBAP2), was found to translocate to SGs upon HS in TM4 cells by immunofluorescence. Moreover, SG assembly was significantly diminished after UBAP2 knockdown by RNA inference during HS, suggesting the important role of UBAP2 in SG assembly. In addition, UBAP2 knockdown reduced the expression of ZO-1, ß-Catenin and Claudin-11, which implied its potential role in the function of the BTB. Overall, our study demonstrated the role of SGs in maintaining BTB functions during HS and identified a new component implicated in SG formation in Sertoli cells. These findings not only offer novel insights into the biological functions of SGs and the molecular mechanism of low fertility in males in summer, but also potentially provide an experimental basis for male fertility therapies.


Asunto(s)
Barrera Hematotesticular , ADN Helicasas , Masculino , Animales , Ratones , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , beta Catenina , ARN , Claudinas , Mamíferos
6.
RSC Adv ; 14(18): 12935-12946, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38650683

RESUMEN

Oral mucosal impairment is a prevalent oral disease that frequently causes pain for patients. Conventional treatments have limited effectiveness and can cause adverse reactions. Furthermore, the moist and dynamic nature of the oral mucosal environment makes persistent adherence of conventional materials challenging, which can affect treatment efficacy. In this study, we investigated the potential of a NbC/TA-GelMA hydrogel system, where niobium carbide (NbC) and tannic acid (TA) were added to gelatin methacryloyl (GelMA), for repairing oral mucosal impairment. The wet adhesion properties of NbC/TA-GelMA hydrogels were confirmed by the inclusion of TA with a catechol-rich group. In addition, the photothermal effect of NbC/TA-GelMA hydrogel under near-infrared light, synergizing with TA, provided sustained antibacterial action. Furthermore, the NbC/TA-GelMA hydrogel effectively healed damaged oral mucosa of rats.

7.
J Am Chem Soc ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598314

RESUMEN

We report the hierarchical assembly of a chloroplast-derived rotary FoF1-ATPase motor-propelled flasklike pentosan colloidal motor (FPCM) with the ability of the synthesis, storage, and triggered release of biological energy currency ATP. These streamlined and submicrometer-sized hollow flasklike pentosan colloidal motors are prepared by combining a soft-template-based hydrothermal polymerization with a vacuum infusion of chloroplast-derived proteoliposomes containing rotary FoF1-ATPase motors. The generation of proton motive force across the proteoliposomes by injecting an acidic buffer solution promotes the rotation of FoF1-ATPase motors to drive the self-propelled motion of FPCMs, accompanying the inner ATP synthesis and storage. These rotary FoF1-ATPase motor-powered FPCMs exhibit a chemotactic behavior by migrating from their neck opening to their round bottom along a proton gradient of the external environment (negative chemotaxis). Such rotary biomolecular motor-driven flasklike pentosan colloidal motors with ATP synthesis and on-demand release make them promising candidates for engineering novel intelligent nanocarriers to actively regulate cellular metabolism.

8.
Int J Biol Macromol ; 269(Pt 2): 131803, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38670205

RESUMEN

Melatonin plays an important role in mammalian reproductive activities, to further understand the effects of endogenous melatonin on functions of ovary, the transgenic sheep with overexpression of melatonin synthetic enzyme gene ASMT in ovary were generated. The results showed that total melatonin content in follicular fluid of transgenic sheep was significantly greater than that in the wild type. Accordingly, the follicle numbers of transgenic sheep were also significantly greater than those in the WT. The results of follicular fluid metabolites sequencing showed that compared with WT, the differential metabolites of the transgenic sheep were significantly enriched in several signaling pathways, the largest number of metabolites was lipid metabolism pathway and the main differential metabolites were lipids and lipoid molecules. SMART-seq2 were used to analyze the oocytes and granulosa cells of transgenic sheep and WT sheep. The main differential enrichment pathway was metabolic pathway, in which lipid metabolism genes accounted for the majority. In conclusion, this is the first report to show that ovary overexpression of ASMT increased local melatonin production and follicle numbers. These results may imply that ASMT plays an important role in follicle development and formation, and melatonin intervention may be a potential method to promote this process.

9.
Nanoscale ; 16(18): 8689-8707, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38606460

RESUMEN

Glioblastoma multiforme (GBM) is one of the highly malignant brain tumors characterized by significant morbidity and mortality. Despite the recent advancements in the treatment of GBM, major challenges persist in achieving controlled drug delivery to tumors. The management of GBM poses considerable difficulties primarily due to unresolved issues in the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB) and GBM microenvironment. These factors limit the uptake of anti-cancer drugs by the tumor, thus limiting the therapeutic options. Current breakthroughs in nanotechnology provide new prospects concerning unconventional drug delivery approaches for GBM treatment. Specifically, swimming nanorobots show great potential in active targeted delivery, owing to their autonomous propulsion and improved navigation capacities across biological barriers, which further facilitate the development of GBM-targeted strategies. This review presents an overview of technological progress in different drug administration methods for GBM. Additionally, the limitations in clinical translation and future research prospects in this field are also discussed. This review aims to provide a comprehensive guideline for researchers and offer perspectives on further development of new drug delivery therapies to combat GBM.


Asunto(s)
Antineoplásicos , Barrera Hematoencefálica , Neoplasias Encefálicas , Sistemas de Liberación de Medicamentos , Glioblastoma , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Animales , Microambiente Tumoral/efectos de los fármacos
10.
Ecotoxicol Environ Saf ; 274: 116229, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508101

RESUMEN

Carbon-fixing functional strain-loaded biochar may have significant potential in carbon sequestration given the global warming situation. The carbon-fixing functional strain Bacillus cereus SR was loaded onto rice straw biochar pyrolyzed at different temperatures with the anticipation of clarifying the carbon sequestration performance of this strain on biochar and the interaction effects with biochar. During the culture period, the content of dissolved organic carbon (DOC), easily oxidizable organic carbon, and microbial biomass carbon in biochar changed. This finding indicated that B. cereus SR utilized organic carbon for survival and enhanced carbon sequestration on biochar to increase organic carbon, manifested by changes in CO2 emissions and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme activity. Linear regression analysis showed that the strain was likely to consume DOC on 300 °C biochar, although the Rubisco enzyme activity was higher. In contrast, the strain had a higher carbon sequestration potential on 500 °C biochar. Correlation analysis showed that Rubisco enzyme activity was controlled by the physical structure of the biochar. Our results highlight the differences in the survival mode and carbon sequestration potential of B. cereus SR on biochar pyrolyzed at different temperatures.


Asunto(s)
Bacillus cereus , Carbono , Secuestro de Carbono , Ribulosa-Bifosfato Carboxilasa , Suelo/química , Carbón Orgánico/química , Agricultura/métodos
11.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38551495

RESUMEN

Lipid droplets (LDs) are composed of a core of neutral lipids wrapped by a phospholipid (PL) monolayer containing several hundred proteins that vary between different cells or organisms. How LD proteins target to LDs is still largely unknown. Here, we show that RNAi knockdown or gene mutation of let-767, encoding a member of hydroxysteroid dehydrogenase (HSD), displaced the LD localization of three well-known LD proteins: DHS-3 (dehydrogenase/reductase), PLIN-1 (perilipin), and DGAT-2 (diacylglycerol O-acyltransferase 2), and also prevented LD growth in Caenorhabditis elegans. LET-767 interacts with ARF-1 (ADP-ribosylation factor 1) to prevent ARF-1 LD translocation for appropriate LD protein targeting and lipid homeostasis. Deficiency of LET-767 leads to the release of ARF-1, which further recruits and promotes translocation of ATGL-1 (adipose triglyceride lipase) to LDs for lipolysis. The displacement of LD proteins caused by LET-767 deficiency could be reversed by inhibition of either ARF-1 or ATGL-1. Our work uncovers a unique LET-767 for determining LD protein targeting and maintaining lipid homeostasis.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas de Caenorhabditis elegans , Gotas Lipídicas , Homeostasis , Lipasa/genética , Proteínas Asociadas a Gotas Lipídicas/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Lípidos , Lipólisis/fisiología , Proteínas/metabolismo , Caenorhabditis elegans , Animales , Oxidorreductasas de Alcohol/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
12.
Langmuir ; 40(14): 7492-7501, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38530941

RESUMEN

The important concept of confined synthesis is considered a promising strategy for the design and synthesis of definable nanostructured materials with controllable compositions and specific morphology, such as highly loaded single-atom catalysts capable of providing abundant active sites for photocatalytic reactions. In recent years, researchers have been working on developing new confined reaction systems and searching for new confined spaces. Here, we present for the first time the concept of a bubble liquid film as a novel confined space. The liquid film has a typical sandwich structure consisting of a water layer, sandwiched between the upper and lower surfactant layers, with the thickness of the intermediate water layer at the micro- and nanometer scales, which can serve as a good confinement. Based on the above understanding and combined with the photodeposition method, we successfully confined synthesized Ag/TiO2, Au/TiO2, and Pd/TiO2 photocatalysts in liquid film. By HAADF-STEM, it can be seen that the noble metal morphologies are all nanoclusters of about 1 nm and are highly uniformly dispersed on the TiO2 surface. Compared with photodeposition in solution, we believe that the surfactant molecular layer restricts a limited amount of precursor to the liquid film, avoiding the accumulation of noble metals and the formation of large particle size nanoparticles. The liquid film, meanwhile, restricts the migration path of noble metal precursors, allowing for thorough in situ photodeposition and enables the complete and uniform dispersion of noble metal precursors, greatly reducing the photodeposition time. The uniform loading of the three noble metals proved the universality of the method, and the catalysts showed high activity for photocatalytic CO2 reduction. The rates of reduction of CO2 to CO over the Ag/TiO2 photocatalytic reached 230 µmol g-1 h-1.This study provides a new idea for the expansion of the confined reaction system and a reference for the study of liquid film as the confined space.

13.
World Neurosurg ; 185: 327-337.e1, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369106

RESUMEN

OBJECTIVE: This study aimed to systematically evaluate the optimal surgical fusion approach for lumbar spondylolisthesis, to provide the latest and most reliable evidence for future clinical practice. METHODS: A comprehensive search of the PubMed, Ovid-Embase, Web of Science, Cochrane, and Scopus databases was conducted from inception to September 1, 2023, to identify relevant records. Two independent reviewers performed the literature screening, data extraction, and assessment of study quality. RESULTS: Fifteen randomized controlled trials involving 892 patients met the inclusion criteria. The network evidence plot showed that posterolateral fusion and posterior lumbar interbody fusion (PLIF) were the most used fusion techniques. The network meta-analysis results revealed that minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) had a significantly greater improvement in the Oswestry Disability Index (ODI) compared to endoscopic-TLIF, while PLIF had a significantly better fusion effect than posterolateral fusion. Furthermore, no statistically significant differences were observed between other fusion surgeries in terms of improving ODI, fusion rate, complications, or the improvement of visual analog scale-low back pain. The surface under the cumulative ranking curve results indicated that MIS-TLIF had the greatest potential for improving ODI, visual analog scale-low back pain, and complications, while PLIF had the greatest potential for increasing fusion rates. However, the existing selection bias, measurement bias, reporting bias, and publication bias may have reduced the reliability of the meta-analysis results. CONCLUSIONS: Among the various fusion surgeries for lumbar spondylolisthesis, MIS-TLIF appears to provide the greatest benefit to patients. However, more high-quality, large-scale studies are needed to further investigate the treatment efficacy of different fusion surgeries for lumbar spondylolisthesis.


Asunto(s)
Vértebras Lumbares , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Fusión Vertebral , Espondilolistesis , Espondilolistesis/cirugía , Humanos , Fusión Vertebral/métodos , Vértebras Lumbares/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Resultado del Tratamiento
14.
Ear Nose Throat J ; : 1455613241235537, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411128

RESUMEN

Neurosynovial tumors, originating from Schwann cells within nerve sheaths, are benign entities, with 25% to 45% manifesting in the head and neck region. However, occurrences in the pterygopalatine fossa (PPF) are exceptionally rare, and only a handful of cases have been documented. In this report, we present the unique case of a 6-year-old child exhibiting a sizable soft tissue mass in the left PPF, extending into the inferior orbital fissure. The patient underwent successful intranasal endoscopic removal of PPF schwannoma utilizing the prelacrimal recess approach, with postoperative pathology confirming the diagnosis of schwannoma. Schwannomas within the PPF are particularly uncommon, and instances of such tumors in pediatric patients are even more exceptional. This case highlights the diagnostic and therapeutic challenges associated with PPF schwannomas in children, emphasizing the significance of a multidisciplinary approach for optimal management. In addition, a comprehensive literature review is presented to provide insights into the existing knowledge on this rare entity, further contributing to the understanding of pediatric PPF schwannomas.

15.
J Hazard Mater ; 466: 133688, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310845

RESUMEN

Rice (Oryza sativa) is one of the major cereal crops and takes up cadmium (Cd) more readily than other crops. Understanding the mechanism of Cd uptake and defense in rice can help us avoid Cd in the food chain. However, studies comparing Cd uptake, toxicity, and detoxification mechanisms of leaf and root Cd exposure at the morphological, physiological, and transcriptional levels are still lacking. Therefore, experiments were conducted in this study and found that root Cd exposure resulted in more severe oxidative and photosynthetic damage, lower plant biomass, higher Cd accumulation, and transcriptional changes in rice than leaf Cd exposure. The activation of phenylpropanoids biosynthesis in both root and leaf tissues under different Cd exposure routes suggests that increased lignin is the response mechanism of rice under Cd stress. Moreover, the roots of rice are more sensitive to Cd stress and their adaptation responses are more pronounced than those of leaves. Quantitative PCR revealed that OsPOX, OsCAD, OsPAL and OsCCR play important roles in the response to Cd stress, which further emphasize the importance of lignin. Therefore, this study provides theoretical evidence for future chemical and genetic regulation of lignin biosynthesis in crop plants to reduce Cd accumulation.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Oryza/genética , Lignina , Perfilación de la Expresión Génica , Fotosíntesis , Raíces de Plantas/genética , Raíces de Plantas/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
16.
Small ; : e2311891, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178190

RESUMEN

The active lithium loss of lithium-ion batteries can be well addressed by adding a cathode lithium compensation agent. Due to the poor conductivity and electrochemical activity, lithium carbonate (Li2 CO3 ) is not considered as a candidate. Herein, an effective cathode lithium compensation agent, the recrystallized Li2 CO3 combined with large specific surface area disordered porous carbon (R-LCO@SPC) is prepared. The screened SPC makes it easier for nano-sized Li2 CO3 to adsorb and decompose on carbon substrate, meantime, exposing plenty of catalytic active sites of C═O, which can significantly improve the electrochemical activity and conductivity of Li2 CO3 , thus greatly reducing the decomposition potential of Li2 CO3 (4.0 V) and releasing high irreversible capacity (580 mAh g-1 ) compared to the unmodified Li2 CO3 (nearly no capacity above 4.6 V). Meantime, the Li2 CO3 can disappear completely without any by-product after the initial cycle accompanied by partially dissolved in electrolyte, optimizing the composition of SEI. The resultant lithium compensation agent applied to LMFP//graphite full cell exhibits a 19.1% increase in energy density, enhancing the rate and cycling performance, demonstrating great practical applications potential in high energy density lithium-ion batteries.

17.
Small Methods ; : e2301219, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180156

RESUMEN

Single-atom catalysts (SACs) have made great progress in recent years as potential catalysts for energy conversion and storage due to their unique properties, including maximum metal atoms utilization, high-quality activity, unique defined active sites, and sustained stability. Such advantages of single-atom catalysts significantly broaden their applications in various energy-conversion reactions. Given the extensive utilization of single-atom catalysts, methods and specific examples for improving the performance of single-atom catalysts in different reaction systems based on the Sabatier principle are highlighted and reactant binding energy volcano relationship curves are derived in non-homogeneous catalytic systems. The challenges and opportunities for single-atom catalysts in different reaction systems to improve their performance are also focused upon, including metal selection, coordination environments, and interaction with carriers. Finally, it is expected that this work may provide guidance for the design of high-performance single-atom catalysts in different reaction systems and thereby accelerate the rapid development of the targeted reaction.

18.
J Environ Manage ; 353: 120084, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281421

RESUMEN

Crop straw return is a widely used agricultural management practice. The addition of crop straw significantly alters the pool of dissolved organic matter (DOM) in agricultural soils and plays a pivotal role in the global carbon (C) cycle, which is sensitive to climate change. The DOM concentration and composition at different soil depths could regulate the turnover and further storage of organic C in terrestrial systems. However, it is still unclear how crop straw return influences the change in DOM composition in rice paddy soils. Therefore, a field experiment was conducted in which paddy soil was amended with crop straw for 10 years. Two crop straw-addition treatments [NPK with 50% crop straw (NPK+1/2S) and NPK with 100% crop straw (NPK + S)], a conventional mineral fertilization control (NPK) and a non-fertilized control were included. Topsoil (0-20 cm) and subsoil (20-40 cm) samples were collected to investigate the soil DOM concentration and compositional structure of the profile. Soil nutrients, iron (Fe) fraction, microbial biomass carbon (MBC), and concentration and optical properties (UV-Vis and fluorescence spectra) of soil DOM were determined. Here, we found that the DOM in the topsoil was more humified than that in the subsoil. The addition of crop straw further decreased the humidification degree of DOM in the subsoil. In crop straw-amended topsoil, microbial decomposition controlled the composition of DOM and induced the formation of aromatic DOM. In the straw-treated subsoil, selective adsorption by poorly crystalline Fe(oxyhydr)oxides and microbial decomposition controlled the composition of DOM. In particular, the formation of protein-like compounds could have played a significant role in the microbial degradation of DOM in the subsoil. Overall, this work conducted a case study within long-term agricultural management to understand the changes in DOM composition along the soil profile, which would be further helpful for evaluating C cycling in agricultural ecosystems.


Asunto(s)
Materia Orgánica Disuelta , Oryza , Ecosistema , Suelo/química , Agricultura , Carbono
19.
Small ; : e2308661, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258607

RESUMEN

Passive daytime radiative cooling (PDRC) materials with sustainable energy harvesting capability is critical to concurrently reduce traditional cooling energy utilized for thermal comfort and transfer natural clean energies into electricity. Herein, a versatile photonic film (Ecoflex@BTO@UAFL) based on a novel fluorescent luminescence color passive radiative cooling with triboelectric and piezoelectric effect is developed by filling the dielectric BaTiO3 (BTO) nanoparticles and ultraviolet absorption fluorescent luminescence (UAFL) powder into the elastic Ecoflex matrix. Test results demonstrate that the Ecoflex@BTO@UAFL photonic film exhibits a maximum passive radiative cooling effect of ∽10.1 °C in the daytime. Meanwhile, its average temperature drop in the daytime is ~4.48 °C, which is 0.91 °C higher than that of the Ecoflex@BTO photonic film (3.56 °C) due to the addition of UAFL material. Owing to the high dielectric constant and piezoelectric effect of BTO nanoparticles, the maximum power density (0.53 W m-2 , 1 Hz @ 10 N) of the Ecoflex@BTO photonic film-based hybrid nanogenerator is promoted by 70.9% compared to the Ecoflex film-based TENG. This work provides an ingenious strategy for combining PDRC effects with triboelectric and piezoelectric properties, which can spontaneously achieve thermal comfort and energy conservation, offering a new insight into multifunctional energy saving.

20.
Nano Lett ; 24(4): 1360-1366, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252685

RESUMEN

Dielectric environment engineering is an efficient and general approach to manipulating polaritons. Liquids serving as the surrounding media of polaritons have been used to shift polariton dispersions and tailor polariton wavefronts. However, those liquid-based methods have so far been limited to their static states, not fully unleashing the promise offered by the mobility of liquids. Here, we propose a microfluidic strategy for polariton manipulation by merging polaritonics with microfluidics. The diffusion of fluids causes gradient refractive indices over microchannels, which breaks the symmetry of polariton dispersions and realizes the microfluidic analogue to nonreciprocal polariton dragging. Based on polariton microfluidics, we also designed a set of on-chip polaritonic elements to actively shape polaritons, including planar lenses, off-axis lenses, Janus lenses, bends, and splitters. Our strategy expands the toolkit for the manipulation of polaritons at the subwavelength scale and possesses potential in the fields of polariton biochemistry and molecular sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA